Vie metaboliche durante l'adozione di diete a basso contenuto di carboidrati: perdita di peso vs effetti avversi

  • Rafael Henrique de Oliveira Nascimento Graduando do curso de Nutrição do Centro Universitário Central Paulista-UNICEP, São Carlos, São Paulo, Brasil.
  • André Vessoni Alexandrino Centro Universitário Central Paulista-UNICEP, São Carlos, São Paulo, Brasil.
Parole chiave: Carboidrati, Dieta chetogenica, Perdita di peso, Ciclo di Krebs, Corpi chetonici

Abstract

Negli ultimi decenni, l'uso di diete a basso contenuto di carboidrati per la perdita di peso e per la prevenzione e il trattamento dell'obesità è diventato popolare. Il ciclo di Krebs è la principale via metabolica per i processi di ossidazione che coinvolgono i macronutrienti nei tessuti animali. Il ciclo di Krebs dipende dalla molecola di Acetil-CoA da avviare, una molecola generata, in un primo momento, nei processi di glicogenolisi e glicolisi. Quando si verifica la privazione dei carboidrati a causa di questi tipi di diete, l'attività di questi due processi diminuisce e l'organismo è costretto ad adottare altri due processi metabolici per la generazione di Acetil-CoA, la gluconeogenesi e la chetogenesi. Questa revisione della letteratura mirava a descrivere questi processi, nonché gli effetti dell'aumento della loro attività e la loro relazione con l'attività del ciclo di Krebs. Materiali e metodi: è stata effettuata una ricerca nel database PubMed di articoli scientifici pubblicati tra il 2000 e il 2022 utilizzando termini correlati all'argomento. Conclusione: le diete a basso contenuto di carboidrati hanno effetti avversi che richiedono cautela, oltre a contraddire le raccomandazioni dietetiche proposte dalle agenzie sanitarie specializzate.

Riferimenti bibliografici

-Akram, M. Citric Acid Cycle and Role of its Intermediates in Metabolism. Cell Biochemistry and Biophysics. Vol. 68. Num. 3. 2014. p. 475-478.

-Arsyad, A.; Idris, I.; Rasyid, A. A.; Usman, R. A. Faradillah, K. R.; Latif, W. O. U.; Lubis, Z. I.; Aminuddin, A.; Yustisia, I.; Djabir, Y. Y. Long-Term Ketogenic Diet Induces Metabolic Acidosis, Anemia, and Oxidative Stress in Healthy Wistar Rats. Journal of Nutrition and Metabolism. Vol. 2020. 2020. p. 1-7.

-Barber, T. M.; Hanson, P.; Kabisch, S.; Pfeiffer, A. F. H.; Weickert, M. O. The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients. Vol. 13. Num. 4. 2021. p. 1187.

-Bashir, B.; Fahmy, A. A.; Raza, F.; Banerjee, M. Non-diabetic ketoacidosis: a case series and literature review. Postgrad Med J. Vol. 97. Num. 1152. 2021. p. 667-671.

-Bolla, A. M.; Caretto, A.; Laurenzi, A.; Scavini, M.; Piemonti, L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients. Vol. 11. Num. 5. 2019. p. 962.

-Brouns, F. Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable? European Journal of Nutrition. Vol. 57. Num. 4. 2018. p. 1301-1312.

-Caballero, B. The Global Epidemic of Obesity: An Overview. Epidemiologic Reviews. Vol. 29. Num. 1. 2007. p. 1-5.

-Dabek, A.; Wojtala, M.; Pirola, L.; Balcerczyk, A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients. Vol. 12. Num. 3. 2020. p. 788.

-Dansinger, M. L.; Gleason, J. A.; Griffith, J. L.; Selker, H. P.; Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Risk Reduction. JAMA. Vol. 293. Num. 1. 2005. p. 43.

-Dhatariya, K. K.; Glaser, N. S.; Codner, E.; Umpierrez, G. E. Diabetic ketoacidosis. Nature Reviews Disease Primers. Vol. 6. Num. 1. 2020. p. 40.

-Dashty, M. A quick look at biochemistry: Carbohydrate metabolism. Clinical Biochemistry. Vol. 46. Num. 15. 2013. p. 1339–1352.

-Fedorovich, S.; Voronina, P.; Waseem, T. Ketogenic diet versus ketoacidosis: what determines the influence of ketone bodies on neurons? Neural Regeneration Research. Vol. 13. Num. 12. 2018. p. 2060.

-Feinman, R. D. The biochemistry of low-carbohydrate and ketogenic diets. Current Opinion in Endocrinology, Diabetes & Obesity. Vol. 27. Num. 5. 2020. p. 261-268.

-Frigolet, M. E.; Barragán, V. E. R.; González, M. T. Low-Carbohydrate Diets: A Matter of Love or Hate. Annals of Nutrition and Metabolism. Vol. 5. Num. 4. 2011. p. 320-334.

-GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine. Vol. 377. Num. 1. 2017. p. 13-27.

-Gershuni, V. M.; Yan, S. L.; Medici, V. Nutritional ketosis for weight management and reversal of metabolic syndrome. Current nutrition reports. Vol. 7. Num. 3. 2018. p. 97-106.

-Goldenberg, J. Z.; Day, A.; Brinkworth, G. D.; Sato, J.; Yamada, S.; Jonsson, T.; Beardsley, J.; Johnson, J. A.; Thabane, L.; Johnston, B. C. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. Vol. 372. 2021. p. m4743.

-Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARα. International Journal of Molecular Sciences. Vol. 17. Num. 12. 2016. p. 2093.

-Hashimoto, Y.; Fukuda, T.; Oyabu, C.; Tanaka, M.; Asano, M.; Yamazaki, M.; Fukui, M. Impact of low-carbohydrate diet on body composition: Meta-analysis of randomized controlled studies. Obesity Reviews. Vol. 17. Num. 6. 2016. p. 499-509.

-Hinney, A.; Korner, A.; Fischer-Posovszky, P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nature Reviews Endocrinology. Vol. 18. Num. 10. 2022. p. 623-637.

-Imanaka, M.; Ando, M.; Kitamura, T.; Kawamura, T. Impact of registered dietitian expertise in health guidance for weight loss. PLoS ONE. Vol. 11. Num. 3. 2016. p. 1-8.

-Judge, A.; Dodd, M. S. Metabolism. Essays in Biochemistry. Vol. 64. Num. 4. 2020. p. 607-647.

-Longo, R.; Peri, C.; Cricrì, D.; Caruso, D.; Mitro, N.; Fabiani, E.; Crestani, M. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients. Vol. 11. Num. 10. 2019. p. 2497.

-Kanikarla-Marie, P.; Jain, S. K. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radical Biology and Medicine. Vol. 95. 2016. p. 268-277.

-Ma, Y.; Temkin, S. M.; Hawkridge, A. M.; Guo, C.; Wang, W.; Wang, X. Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Letters. Vol. 435. 2018. p. 92-100.

-Mansoor, N.; Vinknes, K. J.; Veierod, M. B.; Retterstol, K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors a meta-analysis of randomised controlled trials. British Journal of Nutrition. Vol. 115. Num. 3. 2016. p. 466-479.

-McPherson, P. A. C.; McEneny, J. The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. Journal of Physiology and Biochemistry. Vol. 68. Num. 1. 2012. p. 141-151.

-Merlotti, C.; Ceriani, V.; Morabito, A.; Pontiroli, A. E. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis. International Journal of Obesity. Vol. 41. Num. 5. 2017. p. 672-682.

-Monnier, L.; Schlienger, J. L.; Colette, C.; Bonnet, F. The obesity treatment dilemma: Why dieting is both the answer and the problem? A mechanistic overview. Diabetes & Metabolism. Vol. 47. Num. 3. 2021. p. 101192.

-Mooradian, A. D. The Merits and the Pitfalls of Low Carbohydrate Diet: A Concise Review. The journal of nutrition, health & aging. Vol. 24. Num. 7. 2020. p. 805-808.

-Newman, J. C.; Verdin, E. β-hydroxybutyrate: Much more than a metabolite. Diabetes Research and Clinical Practice. Vol. 106. Num. 2. 2014. p. 173-181.

-Puchalska, P.; Crawford, P. A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metabolism. Vol. 25. Num. 2. 2017. p. 262–284.

-Rogers, G. W.; Nadanaciva, S.; Swiss, R.; Divakaruni, A. S.; Will, Y. Assessment of Fatty Acid Beta Oxidation in Cells and Isolated Mitochondria. Current Protocols in Toxicology. Vol. 60. Num. 1. 2014. p. 25.3.1-25.3.19.

-Ruan, H. B.; Crawford, P. A. Ketone bodies as epigenetic modifiers. Current Opinion in Clinical Nutrition & Metabolic Care. Vol. 21. Num. 4. 2018. p. 260-266.

-Rui, L. Energy Metabolism in the Liver. In: Comprehensive Physiology. Vol. 176. Num. 10. 2014. p. 177-197.

-Ryan, D. G.; Murphy, M. P.; Frezza, C.; Prag, H. A.; Chouchani, E. T.; O’Neil, L. A.; Mills, E. L.Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nature Metabolism. Vol. 1. Num. 1. 2019. p. 16-33.

-Schugar, R. C.; Crawford, P. A. Low-carbohydrate ketogenic diets, glucose homeostasis, and nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care. Vol. 15. Num. 4. 2012. p. 374-380.

-Shi, L.; Tu, B. P. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Current Opinion in Cell Biology. Vol. 33. 2015. p. 125-131.

-Steinhauser, M. L.; Olenchock, B. A.; O’Keefe, J.; Luan, M.; Pierce, K. A.; Lee, H.; Pantano, L.; Klibanski, A.; Shulman, G. I.; Clish, C. B.; Fazeli, O. K. The circulating metabolome of human starvation. JCI Insight. Vol. 3. Num. 16. 2018. p. 1-16.

-Wang, S. P.; Yang, H.; Wu, J. W.; Gauthier, N.; Fukao, T.; Mitchell, G. A. Metabolism as a tool for understanding human brain evolution: Lipid energy metabolism as an example. Journal of Human Evolution. Vol. 77. 2014. p. 41-49.

-Wang, Z.; Dong, C. Gluconeogenesis in Cancer: Function and Regulation of PEPCK, FBPase, and G6Pase. Trends in Cancer. Vol. 5. Num. 1. 2019. p. 30-45.

-Wang, L.; Chen, P.; Xiao, W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients. Vol. 13. Num. 10. 2021. p. 3420.

-Wasserman, D. H. Four grams of glucose. American Journal of Physiology-Endocrinology and Metabolism. Vol. 296. Num. 1. 2009. p. E11-E21.

-Westerterp-Plantenga, M. S.; Lemmens, S. G.; Westerterp, K. R. Dietary protein - its role in satiety, energetics, weight loss and health. British Journal of Nutrition. Vol. 108. Num. S2. 2012. p. S105-S112.

-Winwood-Smith, H. S.; Franklin, C. E.; White, C. R. Low-carbohydrate diet induces metabolic depression: a possible mechanism to conserve glycogen. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. Vol. 313. Num. 4. 2017. p. R347-R356.

-WHO. World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. Vol. 894. 2000. p. 1-253.

-WHO. World Health Organization. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. WHO Technical Report Series. Vol. 916. 2003.

-Zangari, J.; Petrelli, F.; Maillot, B.; Martinou, J. C. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules. Vol. 10. Num. 7. 2020. p. 1068.

Pubblicato
2023-05-03
Come citare
Nascimento, R. H. de O., & Alexandrino, A. V. (2023). Vie metaboliche durante l’adozione di diete a basso contenuto di carboidrati: perdita di peso vs effetti avversi. Giornale Brasiliano Di obesità, Nutrizione E Perdita Di Peso, 17(107), 276-289. Recuperato da https://www.rbone.com.br/index.php/rbone/article/view/2229
Sezione
Articoli scientifici - Revisione

Puoi leggere altri articoli dello stesso autore/i