Comportamiento alimentario de individuos con obesidad: relación con los mecanismos de control homeostático y hedónico de la ingesta de alimentos

  • Beatriz Mathenhauer Montai Messias Nutricionista, aluna do Curso de Especialização em Nutrição Esportiva e Obesidade, Departamento de Ciências da Saúde, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
  • Cristiana Araújo Gontijo Doutora em Ciências da Saúde - UFU, Docente da Ânima Educação, Departamento de Ciências da Saúde, Uberlândia, Minas Gerais, Brasil.
  • Cristina Matos Boaventura Mestre em Fisioterapia Cardiorrespiratória - UNITRI, Docente da Ânima Educação, Departamento de Ciências da Saúde, Uberlândia, Minas Gerais, Brasil.
  • Léia Cardoso de Sousa Doutora em Ciências da Saúde - UFU, Docente da Ânima Educação, Departamento de Ciências da Saúde, Uberlândia, Minas Gerais, Brasil.
  • Phelipe Elias da Silva Cirurgião-dentista, Docente da Ânima Educação, Departamento de Saúde Coletiva, Uberlândia, Minas Gerais, Brasil.
  • Heitor Bernardes Pereira Delfino Doutor em Medicina Clínica Médica - FMRP/USP, Docente do Curso de Especialização em Nutrição Esportiva e Obesidade, Departamento de Ciências da Saúde, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
Palabras clave: Obesidad, Alimentos ultraprocesados, Control homeostático de energia, Comportamiento hedónico

Resumen

Introducción: La obesidad es una enfermedad de etiología multifactorial y está estrechamente relacionada con cambios en la conducta alimentaria. En teoría, el cuerpo dispone de un complejo mecanismo homeostático para regular el hambre, la saciedad y la adiposidad, sin embargo en personas con obesidad este sistema sufre una disfunción. Además, la comida ha sido objeto de placer, especialmente alimentos con alta densidad energética, ricos en azúcares, grasas y/o aditivos químicos, conocidos como ultraprocesados, que presentan alta palatabilidad, motivando comportamientos hedónicos y consecuentemente sistemas de recompensa. Objetivo: Describir los mecanismos implicados en la regulación del hambre y la saciedad, así como las motivaciones para consumir determinados alimentos y cantidades, motivados por el control hedónico, y sus asociaciones con la conducta alimentaria de individuos con obesidad. Materiales y Métodos: Se trata de una revisión narrativa de la literatura, que se realizó utilizando las bases de datos Pubmed, Google Scholar y Cochrane, incluyendo principalmente artículos publicados después de 2018 en inglés y portugués. Resultados: Se identificó una fuerte asociación entre el consumo de alimentos ultraprocesados ​​y la obesidad debido a su alta densidad energética y palatabilidad, siendo apuntados en conductas alimentarias hedónicas debido a la activación de sistemas de recompensa. Además, la obesidad se relaciona con alteraciones en los controles homeostáticos, como la resistencia a la insulina y la leptina, lo que hace que el control del hambre, la saciedad y la adiposidad se vuelvan disfuncionales, lo que dificulta aún más el tratamiento. Conclusión: La complejidad que rodea la obesidad y su tratamiento muestra la necesidad de más políticas públicas y estudios para lograr un mayor conocimiento de los mecanismos involucrados.

Citas

-Ahima, R. S.; Antwi, D. A. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am. Vol. 37. Num. 4. 2008. p. 811-23. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710609/.

-Almiron-Roig, E.; Palla, L.; Guest, K.; Ricchiuti, C.; Vint, N.; Jebb, S. A.; Drewnowski, A. Factors that determine energy compensation: a systematic review of preload studies. Nutr Rev. Vol. 71. Num. 7. 2013. p. 458-73. doi: 10.1111/nure.12048. Epub 2013 Jun 10. PMID: 23815144; PMCID: PMC3746122.

-Banks, W. A.; Coon, A. B.; Robinson, S. M.; Moinuddin, A.; Shultz, J. M.; Nakaoke, R.; Morley, J. E. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes. Vol. 53. Num. 5. 2004. p. 1253-1260. doi: 10.2337/diabetes.53.5.1253.

-Bates, S.H.; Stearns, W.H.; Dundon, T.A.; Schubert, M.; Tso, A.W.; Wang, Y.; Banks, A.S.; Lavery, H.J.; Haq, A.K.; Maratos-Flier, E.; Neel, B.G.; Schwartz, M.W.; Myers, M.G. JR. STAT3 Signalling is Required for Leptin Regulation of Energy Balance But Not Reproduction. Nature Num. 421. 2003. p. 856-9. 10.1038/nature01388. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12594516/.

-Beaudry, J. L.; Kaur, K. D.; Varin, E. M.; Baggio, L. L.; Cao, X.; Mulvihill, E. E.; Bates, H. E.; Campbell, J. E.; Drucker, D. J. Physiological roles of the GIP receptor in murine brown adipose tissue. Mol Metab. Num. 28. 2019. p. 14-25. doi: 10.1016/j.molmet.2019.08.006. Epub 2019 Aug 10. PMID: 31451430; PMCID: PMC6822254. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822254/.

-Berridge, K. C. Brainstem systems mediate the enhancement of palatability by chlordiazepoxide. Brain Res. Vol. 447. Num. 2. 1988. p. 262-268. doi: 10.1016/0006-8993(88)91128-6. PMID: 3390698.Disponível em: https://pubmed.ncbi.nlm.nih.gov/3390698/.

-Berridge, K. C.; Peciña, S. Benzodiazepines, appetite, and taste palatability. Neurosci Biobehav Rev. Vol. 19. Num. 1. 1995. p. 121-131. doi: 10.1016/0149-7634(94)00026-w. PMID: 7770192. Disponível em: https://pubmed.ncbi.nlm.nih.gov/7770192/.

-Bleich, Sara N.; Cutler, David; Murray, Christopher; Adams, Alyce. Why is the developed world obese? Annu Rev Public Health. Num. 29. 2008. p. 273-95. Disponível em: https://www.annualreviews.org/doi/pdf/10.1146/annurev.publhealth.29.020907.090954. 13/03/2023.

-Blundell, J.E.; Healford, J.C.G. Appetite: Physiological and Neurobiological Aspects. Encyclopedia of Human Nutrition. London.: Academic Press. 1998. p. 121-126.

-Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissíveis. Vigitel Brasil 2019: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2019. Brasília-DF: MS, 2020a. Disponível em: https://portalarquivos.saude.gov.br/images/pdf/2020/ April/27/vigitel-brasil-2019-vigilancia-fatores-risco.pdf.

-Coleman, D.L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia. Vol. 9. Num. 4. 1973. p. 294-298. doi: 10.1007/BF01221857. PMID: 4767369. Disponível em: https://pubmed.ncbi.nlm.nih.gov/4767369/.

-Coleman, D. L.; Hummel, K. P. Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol. Vol. 217. Num. 5. 1969. p. 1298-1304. doi: 10.1152/ajplegacy.1969.217.5.1298. PMID: 5346292. Disponível em: https://pubmed.ncbi.nlm.nih.gov/5346292/.

-Castro, J. M. The control of food intake of free-living humans: putting the pieces back together. Physiol Behav. Vol. 100. Num. 5. 2010. p. 446-453. doi: 10.1016/j.physbeh.2010.04.028. Epub 2010 May 5. PMID: 20450867; PMCID: PMC2906406.

-Deus, M. R.; Marçal, P. A.; Carmen, G. A. D. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. The American Journal of Clinical Nutrition. Vol. 104. Num. 5. 2016. p. 1433-1440. Disponível em: https://www.sciencedirect.com/science/article/pii/S0002916522046767?via%3Dihub.

-Egecioglu, E.; Skibicka, K.P.; Hansson, C.; Alvarez-Crespo, M.; Friberg, P.A.; Jerlhag, E.; Engel, J.A.; Dickson, S.L. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord. Vol. 12. Num. 3. 2011. p. 141-151. doi: 10.1007/s11154-011-9166-4. PMID: 21340584; PMCID: PMC3145094. Disponível em: https://pubmed.ncbi.nlm.nih.gov/21340584/.

-Elmquist, J.K.; Elias, C.F.; Saper, C.B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron. Vol. 22. Num. 2. 1999. p. 221-232. doi: 10.1016/s0896-6273(00)81084-3. Disponível em: https://pubmed.ncbi.nlm.nih.gov/10069329/.

-Feuerer, M.; Herrero, L.; Cipolletta, D.; Naaz, A.; Wong, J.; Nayer, A.; Lee, J.; Goldfine, A. B.; Benoist, C.; Shoelson, S.; Mathis, D. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. Vol. 15. Num. 8. 2009. p. 930-9. doi: 10.1038/nm.2002. Epub 2009 Jul 26. PMID: 19633656; PMCID: PMC3115752. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115752/.

-Figlewicz, D. P. Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol. Vol. 284. Num. 4. 2003. p. R882-92. doi: 10.1152/ajpregu.00602.2002. PMID: 12626355. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12626355/.

-Flegal, K. M; Kit, B. K; Orpana, Heather.; Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. Num. 309. 2013. p. 71-82. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23280227/.

-Flint, A.; Raben, A.; Blundell, J. E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. Vol. 24. Num. 1. 2000. p. 38-48. doi: 10.1038/sj.ijo.0801083. PMID: 10702749.

-Fried, S.K.; Ricci, M.R.; Russell, C.D.; Laferrère, B. Regulation of leptin production in humans. J Nutr. Vol. 130. Num. 12. 2000. p. 3127S-3131S. doi: 10.1093/jn/130.12.3127S. PMID: 11110887. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0167011508000633?via%3Dihub.

-Fruhwürth, S.; Vogel, H.; Schürmann, A; Williams, K. J. Novel Insights into How Overnutrition Disrupts the Hypothalamic Actions of Leptin. Front Endocrinol (Lausanne). Num. 9. 2018. p. 89. doi: 10.3389/fendo.2018.00089. PMID: 29632515; PMCID: PMC5879088. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879088/.

-Gibbons, C.; Caudwell, P.; Finlayson, G.; Webb, D. L.; Hellström, P. M.; Näslund, E.; Blundell, J. E. Comparison of postprandial profiles of ghrelin, active GLP-1, and total PYY to meals varying in fat and carbohydrate and their association with hunger and the phases of satiety. J Clin Endocrinol Metab. Vol. 98. Num. 5. 2013. p. E847-55. doi: 10.1210/jc.2012-3835. Epub 2013 Mar 18. PMID: 23509106.

-Gibbs, J.; Young, R.C.; Smith, G.P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. Num. 84. 1973. p. 488-495. Disponível em: https://psycnet.apa.org/record/1974-04597-001.

-Gielkens, H.A.; Verkijk, M.; Lam, W.F.; Lamers, C.B.; Masclee, A.A. Effects of hyperglycemia and hyperinsulinemia on satiety in humans. Metabolism. Vol. 47. Num. 3. 1998. p. 321-324. doi: 10.1016/s0026-0495(98)90264-5. PMID: 9500570.

-Goodpaster, B. H.; Thaete, F. L.; Kelley, D. E. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. Vol. 71. Num. 4. 2000. p. 885-892. doi: 10.1093/ajcn/71.4.885. PMID: 10731493. Disponível em: https://pubmed.ncbi.nlm.nih.gov/10731493/.

-Greenway, F.L. Physiological adaptations to weight loss and factors favouring weight regain. Int J Obes. Vol. 39. Num. 8. 2015. p. 1188-1196. doi: 10.1038/ijo.2015.59. Epub 2015 Apr 21. PMID: 25896063; PMCID: PMC4766925. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25896063/.

-Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. Vol. 9. Num. 5. 2008. p. 367-377. doi: 10.1038/nrm2391. PMID: 18401346; PMCID: PMC2886982. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886982/.

-Hagan, M.M.; Rushing, P. A., Pritchard, L. M.; Schwartz, M. W.; Strack, A.M.; Van Der Ploeg, L. H.; Woods, S. C.; Seeley, R.J. Long-term orexigenic effects of AgRP-(83---132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol Regul Integr Comp Physiol. Vol. 279. Num. 1. 2000. p. R47-52. doi: 10.1152/ajpregu.2000.279.1. R47. PMID: 10896863.

-Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; Fletcher, L.A.; Forde, C.G.; Gharib, A.M.; Guo, J.; Howard, R.; Joseph, P.V.; Mcgehee, S.; Ouwerkerk, R.; Raisinger, K.; Rozga, I.; Stagliano, M.; Walter, M.; Walter, P.J.; Yang, S.; Zhou, M. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. Vol. 30. Num. 1. 2019. p. 67-77.e3. doi: 10.1016/j.cmet.2019.05.008. Epub 2019 May 16. Erratum in: Cell Metab. Vol. 30. Num. 1. 2019. p. 226. Erratum in: Cell Metab. Vol. 32. Num. 4. 2020. p. 690. PMID: 31105044; PMCID: PMC7946062. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31105044/.

-Holt, S.; Brand, J.; Soveny, C.; Hansky, J. Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite. Vol. 18. Num. 2. 1992. p. 129-141. doi: 10.1016/0195-6663(92)90190-h. PMID: 1610161.

-Ingalls, A.M.; Dickie, M.M.; Snell, G.D. Obese, a new mutation in the house mouse. J Hered. Vol. 41. Num. 12. 1950. p. 317-318. doi: 10.1093/oxfordjournals.jhered.a106073. PMID: 14824537. Disponível em: https://pubmed.ncbi.nlm.nih.gov/14824537/.

-Juul, F.; Martinez-Steele, E.; Parekh, N.; Monteiro, C. A.; Chang, V. W. Ultra-processed food consumption and excess weight among US adults. Published online by Cambridge University Press. 2018.

-Keller, K.L.; Kral, T.V.E.; Rolls, B.J. Impacts of energy density and portion size on satiation and satiety. InSatiation, Satiety and the Control of Food Intake. 2013. Edited byJ. Blundell, and F. Bellisle. Woodhead Publishing, Oxford, UK. p. 116-127.

-Kennedy, G.C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. Vol. 140. Num. 901. 1953. p. 578-596. doi: 10.1098/rspb.1953.0009. PMID: 13027283. Disponível em: https://pubmed.ncbi.nlm.nih.gov/13027283/.

-Kissileff, H.R. Effects of physical state (liquid-solid) of foods on food intake: procedural and substantive contributions. Am J Clin Nutr. Vol. 42. Num. 5 Suppl. 1985. p. 956-965. doi: 10.1093/ajcn/42.5.956. PMID: 4061368.

-Lam, T.K. Neuronal regulation of homeostasis by nutrient sensing. Nature Med. Num. 16. 2010. p. 392-395. Disponível em: https://pubmed.ncbi.nlm.nih.gov/20376051/.

-Le Magnen, J. Advances in studies of the physiological control and regulation of food intake. In Progress in Physiological Psychology. 1971. Edited by E. Stellar and J.M. Sprague. Academic Press. New York, N.Y. USA. p. 203-261.

-Lejeune, M.P.; Westerterp, K.R.; Adam, T.C.; Luscombe-Marsh, N.D.; Westerterp-Plantenga, M.S. Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr. Vol. 83. Num. 1. 2006. p. 89-94. doi: 10.1093/ajcn/83.1.89. PMID: 16400055.

-Louzada, M.L.C. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Available online 29 July 2015. Disponível em: https://sci-hub.se/https://doi.org/10.1016/j.ypmed.2015.07.018.

-Lumeng, C.N.; Delproposto, J.B.; Westcott, D. J.; Saltiel, A.R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. Vol. 57. Num. 12. 2008. p. 3239-3246. doi: 10.2337/db08-0872. Epub 2008 Oct 1. PMID: 18829989; PMCID: PMC2584129. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584129/.

-Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J Clin Invest. Vol. 121. Num. 6. 2011. p. 2111-2117. doi: 10.1172/JCI57132. Epub 2011 Jun 1. PMID: 21633179; PMCID: PMC3104776. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104776/.

-Matafome, P.; Seiça, R. The role of brain in energy balance. Adv Neurobiol. Num. 19. 2017. p. 33-48. https://doi.org/10.1007/978-3-319- 63260-5_2. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28933060/.

-Mclaughlin, T.; Liu, L.F.; Lamendola, C.; She, L.; Morton, J.; Rivas, H.; Winer, D.; Tolentino, L.; Choi, O.; Zhang, H.; Hui Yen Chng, M.; Engleman, E. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. Vol. 34. Num. 12. 2014. p. 2637-2643. doi: 10.1161/ATVBAHA.114.304636. Epub 2014 Oct 23. PMID: 25341798; PMCID: PMC4445971. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445971/.

-Meguid, M. M.; Yang, Z. J.; Koseki, M. Eating induced rise in LHA-dopamine correlates with meal size in normal and bulbectomized rats. Brain Res Bull. Vol. 36. Num. 5. 1995. p. 487-90. doi: 10.1016/0361-9230(95)92128-3. PMID: 7712212. Disponível em: https://pubmed.ncbi.nlm.nih.gov/7712212/.

-Mellinkoff, S.M.; Frankland, M.; Boyle, D.; Greipel, M. Relationship between serum amino acid concentration and fluctuations in appetite. J Appl Physiol. Vol. 8. Num. 5. 1956. p. 535-538. doi: 10.1152/jappl.1956.8.5.535. PMID: 13295170.

-Moran, T. H.; Dailey, M. J. Intestinal feedback signaling and satiety. Physiol Behav. Vol. 105. Num. 1. 2011. p. 77-81. doi: 10.1016/j.physbeh.2011.02.005. Epub 2011 Feb 17. PMID: 21315751; PMCID: PMC3143258.

-NHANES. National Health and Nutrition Examination Survey Data. Centre of Disease Control and Prevention (CDC), Natl. Cent. Health Stat. (NCHS). 2005. Hyattsville, MD: U.S. Dep. Health Hum. Serv. Disponível em: http://www.cdc.gov/nchs/nhanes.htm.

-Nishimura, S.; Manabe, I.; Nagasaki, M.; Eto, K.; Yamashita, H.; Ohsugi, M.; Otsu, M.; Hara, K.; Ueki, K.; Sugiura, S.; Yoshimura, K.; Kadowaki, T.; Nagai, R. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. Vol. 15. Num. 8. 2009. p. 914-920. doi: 10.1038/nm.1964. Epub 2009 Jul 26. PMID: 19633658. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19633658/.

-Niswender, K.D.; Schwartz, M.W. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol. Vol. 24. Num. 1. 2003. p. 1-10. doi: 10.1016/s0091-3022(02)00105-x. PMID: 12609497. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S009130220200105X?via%3Dihub.

-Nogueiras, R.; Wilson, H.; Rohner-Jeanrenaud, F.; Tschöp, M.H. Central nervous system regulation of adipocyte metabolism. Regul Pept. Vol. 149. Num. 1-3. 2008. p. 26-31. doi: 10.1016/j.regpep.2007.09.034. Epub 2008 Apr 1. PMID: 18453013. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0167011508000633?via%3Dihub.

-NUPENS. A classificação NOVA. 2021. Disponível em: https://www.fsp.usp.br/nupens/a-classificacao-nova/.

-O'Neil, P.M.; Birkenfeld, A.L.; Mcgowan, B.; Mosenzon, O.; Pedersen, S.D.; Wharton, S.; Carson, C.G.; Jepsen, C.H.; Kabisch, M.; Wilding, J.P.H. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. Vol. 392. Num. 10148. 2018. p. 637-649. doi: 10.1016/S0140-6736(18)31773-2. Epub 2018 Aug 16. PMID: 30122305. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30122305/.

-Olefsky, J.M.; Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. Num. 72. 2010. p. 219-246.

-OPAS. Organização Pan-Americana da Saúde. Alimentos e bebidas ultraprocessados na América Latina: tendências, efeito na obesidade e implicações para políticas públicas. Brasília-DF. OPAS. 2018. Disponível em: https://iris.paho.org/bitstream/handle/10665.2/34918/9789275718643-por.pdf?sequence=5&isAllowed=y.

-Passos, C. M.; Maia, E. G.; Levy, R. B.; Martins, A. P. B.; Claro, R. M. Association between the price of ultra-processed foods and obesity in Brazil. NMCD. Vol. 30. Num. 4. 2020. p. 589-598. Disponível em: https://www.nmcd-journal.com/article/S0939-4753(19)30460-0/fulltext.

-Rahmouni, K.; Haynes, W. G.; Morgan, D. A.; Mark, A. L. Intracellular Mechanisms Involved in Leptin Regulation of Sympathetic Outflow. Hypertension. Num. 41. 2003. p. 763-767.

-Rezende, L. F. M.; Giannichi, B. V.; Resende, B. S.; Carvalho, J. B.; Santos, B. J.; Pereira, J. X.; Estivaleti, J. M.; Tomita, L. Y.; Nilson, E.; Paiva, L. S.; Adami, F.; Azeredo, C. M.; Claro, R.; Ferrari, G.; Rocha, R.; Rache, B.; Falbel, F. A epidemia de obesidade e as DCNT: causas, custos e sobrecarga no SUS. 2019. Disponível em: https://rezendelfm.github.io/obesidade-e-as-dcnt/.

-Rolls, B.J.; Rowe, E.A.; Rolls, E.T.; Kingston, B.; Megson, A.; Gunary, R. Variety in a meal enhances food intake in man. Physiol Behav. Vol. 26. Num. 2. 1981. p. 215-221. doi: 10.1016/0031-9384(81)90014-7. PMID: 7232526. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/0031938481900147?via%3Dihub.

-Rui, L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. Num. 14. 2013. p. 387-407. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23990408/.

-Sachs, S.; Zarini, S.; Kahn, D.E.; Harrison, K. A.; Perreault, L.; Phang, T.; Newsom, S.A.; Strauss, A.; Kerege, A.; Schoen, J.A.; Bessesen, D.H.; Schwarzmayr, T.; Graf, E.; Lutter, D.; Krumsiek, J.; Hofmann, S.M.; Bergman, B.C. Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans. Am J Physiol Endocrinol Metab. Vol. 316. Num. 5. 2019. p. E866-E879. doi: 10.1152/ajpendo.00243.2018. Epub 2019 Jan 8. PMID: 30620635; PMCID: PMC6580171. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30620635/.

-Souza, C.T.; Araujo, E.P.; Bordin, S.; Ashimine, R.; Zollner, R.L.; Boschero, A.C.; Saad, M.J.; Velloso, L.A. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. Vol. 146. Num. 10. 2005. p. 4192-4199. doi: 10.1210/en.2004-1520. Epub 2005 Jul 7. PMID: 16002529. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16002529/.

-Schwartz, M.W.; Seeley, R.J.; Woods, S.C.; Weigle, D.S.; Campfield, L.A.; Burn, P.; Baskin, D.G. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes. Vol. 46. Num. 12. 1997. p. 2119-2123. doi: 10.2337/diab.46.12.2119. PMID: 9392508. Disponível em: https://diabetesjournals.org/diabetes/article/46/12/2119/10113/Leptin-Increases-Hypothalamic-Pro-opiomelanocortin.

-Söderpalm, A.H.; Berridge, K.C. Food intake after diazepam, morphine or muscimol: microinjections in the nucleus accumbens shell. Pharmacol Biochem Behav. Vol. 66. Num. 2. 2000. p. 429-434. doi: 10.1016/s0091-3057(00)00220-3. PMID: 10880701. Disponível em: https://pubmed.ncbi.nlm.nih.gov/10880701/.

-Steiner, J.E. Discussion paper: innate, discriminative human facial expressions to taste and smell stimulation. Ann N Y Acad Sci. Num. 237. 1974. p. 229-233. doi: 10.1111/j.1749-6632. 1974.tb49858. x. PMID: 4529591. Disponível em: https://pubmed.ncbi.nlm.nih.gov/4529591/.

-Stensen, S.; Gasbjerg, L.S.; Helsted, M.M.; Hartmann, B.; Christensen, M.B.; Knop, F.K. GIP and the gut-bone axis - Physiological, pathophysiological and potential therapeutic implications. Peptides. Num. 125. 2020. p. 170197. doi: 10.1016/j.peptides.2019.170197. Epub 2019 Nov 9. PMID: 31715213. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31715213/.

-Stephens, T.W.; Basinski, M.; Bristow, P.K.; Bue-Valleskey, J.M.; Burgett, S.G.; Craft, L.; Hale, J.; Hoffmann, J.; Hsiung, H.M.; Kriauciunas, A. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. Vol. 12. Núm. 377. p.530-2. 1995. doi: 10.1038/377530a0. PMID: 7566151. Disponível em: https://pubmed.ncbi.nlm.nih.gov/7566151/.

-Tavares, L. F.; Fonseca, S. C.; Rosam, M. L. G.; Yokoo, Edna, M. Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. Submitted 27 July 2010: Accepted 27 May 2011: First published online 15 July 2011. Disponível em: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/198EA399730DBF2C5488F0F1360C9B6D/S1368980011001571a.pdf/relationship-between-ultra-processed-foods-and-metabolic-syndrome-in-adolescents-from-a-brazilian-family-doctor-program.pdf.

-Thondam, S.K.; Cuthbertson, D.J.; Wilding, J.P.H. The influence of Glucose-dependent Insulinotropic Polypeptide (GIP) on human adipose tissue and fat metabolism: Implications for obesity, type 2 diabetes and Non-Alcoholic Fatty Liver Disease (NAFLD). Peptides. Num. 125. 2020. p. 170208. doi: 10.1016/j.peptides.2019.170208. Epub 2019 Nov 20. PMID: 31759125. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31759125/.

-Tomé, D.; Schwarz, J.; Darcel, N.; Fromentin, G. Protein, amino acids, vagus nerve signaling, and the brain. Am J Clin Nutr. Vol. 90. Num. 3. 2009. p. 838S-843S. doi: 10.3945/ajcn.2009.27462W. Epub 2009 Jul 29. PMID: 19640948.

-Tschöp, M.; Smiley, D. L.; Heiman, M. L. Ghrelin induces adiposity in rodents. Nature. Vol. 407. Num. 6806. 2020. p. 908-913. doi: 10.1038/35038090. PMID: 11057670. Disponível em: https://pubmed.ncbi.nlm.nih.gov/11057670/.

-Turton, M.D.; O'shea, D.; Gunn, I.; Beak, S.A.; Edwards, C.M.; Meeran, K.; Choi, S.J.; Taylor, G.M.; Heath, M.M.; Lambert, P.D.; Wilding, J.P.; Smith, D.M.; Ghatei, M.A.; Herbert, J.; Bloom, S.R. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. Vol. 379. Num. 6560. 1996. p. 69-72. doi: 10.1038/379069a0. PMID: 8538742. Disponível em: https://pubmed.ncbi.nlm.nih.gov/8538742/.

-Veldhorst, M.; Smeets, A.; Soenen, S.; Hochstenbach-Waelen, A.; Hursel, R.; Diepvens, K.; Lejeune, M.; Luscombe-Marsh, N.; Westerterp-Plantenga, M. Protein-induced satiety: effects and mechanisms of different proteins. Physiol Behav. Vol. 94. Num. 2. 2008. p. 300-307. doi: 10.1016/j.physbeh.2008.01.003. Epub 2008 Jan 12. PMID: 18282589.

-Volkow, N.D.; Wang, G.J.; Baler, R.D. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. Vol. 15. Num. 1. 2011. p. 37-46. doi: 10.1016/j.tics.2010.11.001. Epub 2010 Nov 24. PMID: 21109477; PMCID: PMC3124340. Disponível em: https://pubmed.ncbi.nlm.nih.gov/21109477/.

-Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. Vol. 21. Num. 6. 2000. p. 697-738. doi: 10.1210/edrv.21.6.0415. PMID: 11133069.

-Wiedmer, P.; Nogueiras, R.; Broglio, F.; D'alessio, D.; Tschöp, M.H. Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab. Vol. 3. Num. 10. 2007. p. 705-712. doi: 10.1038/ncpendmet0625. PMID: 17893689. Disponível em: https://pubmed.ncbi.nlm.nih.gov/17893689/.

-Williams, D.M.; Nawaz, A.; Evans, M. Drug Therapy in Obesity: A Review of Current and Emerging Treatments. Diabetes Ther. Vol. 11. Num. 6. 2020. p. 1199-1216. doi: 10.1007/s13300-020-00816-y. Epub 2020 Apr 15. PMID: 32297119; PMCID: PMC7261312. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261312/.

-Woods, S. C.; Porte, D. Jr. The role of insulin as a satiety factor in the central nervous system. Adv Metab Disord. Vol. 10. p.457-68. 1983. doi: 10.1016/b978-0-12-027310-2.50024-4. PMID: 6364721. Disponível em: https://pubmed.ncbi.nlm.nih.gov/6364721/.

-WHO. World Health Organization. Consultation on Obesity (‎1999: Geneva, Switzerland)‎ & World Health Organization. (‎2000)‎. Obesity: preventing and managing the global epidemic: report of a WHO consultation. World Health Organization. Disponível em: https://apps.who.int/iris/handle/10665/42330.

-World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases. Geneva 2003. Disponível em: https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=EE7056BD76AB526E8AEA8815A1C76C90?sequence=1.

-World Health Organization. Obesity and overweight. 2021. Disponível em: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

-World Health Organization. Obesity. 2019. Disponível em: https://www.who.int/health-topics/obesity.

-Xu, A.W.; Kaelin, C.B.; Takeda, K.; Akira, S.; Schwartz, M.W.; Barsh, G.S. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest. Vol. 115. Num. 4. 2005. p. 951-958. doi: 10.1172/JCI24301. Epub 2005 Mar 10. PMID: 15761497; PMCID: PMC1062894. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062894/.

-Young, L. R.; Nestle, M. Expanding portion sizes in the US marketplace: implications for nutrition counseling. J Am Diet Assoc. Num. 103. 2003. p. 231-240. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12589331/.

-Yu, Y-H; Vasselli, J.R.; Zhang, Y.; Mechanick, J.I.; Korner, J.; Peterli, R. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes Rev. Num. 16. 2015. p. 234-247. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053237/.

-Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J. M. Positional cloning of the mouse obese gene and its human homologue. Nature. Num. 372. Num. 6505. 1994. p. 425-432. doi: 10.1038/372425a0. Erratum in: Nature 1995 Mar 30;374(6521):479. PMID: 7984236. Disponível em: https://pubmed.ncbi.nlm.nih.gov/7984236/

Publicado
2024-06-20
Cómo citar
Messias, B. M. M., Gontijo, C. A., Boaventura, C. M., Sousa, L. C. de, Silva, P. E. da, & Delfino, H. B. P. (2024). Comportamiento alimentario de individuos con obesidad: relación con los mecanismos de control homeostático y hedónico de la ingesta de alimentos. Revista Brasileña De Obesidad, Nutrición Y Pérdida De Peso, 18(114), 636-650. Recuperado a partir de https://www.rbone.com.br/index.php/rbone/article/view/2428
Sección
Artículos científicos - Revisión

Artículos más leídos del mismo autor/a