Los efectos antiinflamatorios de la melatonina en la obesidad: una revisión de la literatura
Resumen
Introducción: La obesidad es una enfermedad de etiología multifactorial responsable de generar un estado de inflamación crónica subclínica. La melatonina, una hormona producida fisiológicamente por la glándula pineal, ha sido ampliamente estudiada por su efecto antiinflamatorio en varias enfermedades. Objetivo: Analizar los efectos antiinflamatorios de la suplementación con melatonina en el tratamiento de la obesidad. Materiales y Métodos: Esta revisión narrativa se realizó a través de un levantamiento de literatura, utilizando las bases de datos digitales Pubmed, Scielo, Lilacs, Google Scholar y CAPES Periodicals. Resultados: un estudio aleatorio doble ciego evaluó a 44 mujeres con obesidad, que se dividieron aleatoriamente en un grupo que usó melatonina (n = 22) y otro grupo que usó un placebo (n = 22). Se observó que solo el grupo de pacientes que usó melatonina mostró una reducción significativa en las concentraciones séricas de marcadores inflamatorios como TNF alfa, IL-6, hsCRP y MDA. Otro estudio aleatorizado doble ciego analizó a 30 pacientes con obesidad que fueron aleatorizados en 2 grupos, el grupo 1 (n=15) recibió 10 mg de melatonina y el grupo 2 (n=15) recibió placebo. Con la suplementación con melatonina, las concentraciones de adiponectina omentina 1 y GPx (enzima antioxidante) aumentaron significativamente, mientras que los niveles de MDA (marcador de estrés oxidativo) disminuyeron significativamente. Conclusión: Aunque los estudios clínicos sobre este tema son escasos y los existentes tienen un número de muestra reducido, los resultados hasta el momento han demostrado la eficacia de la melatonina para contrarrestar los efectos deletéreos del exceso de tejido adiposo.
Citas
-Arner, P.; Agné, K. “MicroRNA regulatory networks in human adipose tissue and obesity.” Nature reviews. Endocrinology. Vol. 11. Núm. 5. 2015. p. 276-88. doi:10.1038/nrendo.2015.25.
-Bouatia-Naji, N.; e colaboradores. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nature Genetics. Vol. 41. Núm. 1. 2009. p. 89-94. DOI: 10.1038/ng.277.
-Carrillo-Vico, A.; Lardone, P. J.; Álvarez-Śanchez, N.; Rodriguez-Rodriguez, A.; Guerrero, J. M. Melatonin: Buffering the immune system. International Journal of Molecular Sciences. Vol. 14. Núm. 4. 2013. p. 8638-8683. DOI: 10.3390/ijms14048638.
-Cipolla-Neto, J.; Amaral, F. G. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocrine Reviews. Vol. 39. Núm. 6. 2018. p. 990-1028. DOI: 10.1210/er.2018-00084.
-Corrêa, T. A. F.; Rogero, M. M. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition. Vol. 59. 2019. p. 150-157. DOI: 10.1016/j.nut.2018.08.010.
-Cuesta, S.; Kireev, R.; García, C.; Forman, K.; Escames, G.; Vara, E.; Tresguerres, J. A. F. Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model. Mechanisms of Ageing and Development. Vol. 132. Núm. 11-12. 2011. p. 573-582. DOI: 10.1016/j.mad.2011.10.005.
-Dubocovich, M. L.; Delagrange, P; Krause, D. N.; Sugden, D.; Cardinali, D. P.; Olcese, J. International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacological Reviews. Vol. 62. Núm. 3. 2010. p. 343-380. DOI: 10.1124/pr.110.002832.
-El-Bakry, H. A.; Ismail, I. A.; Soliman, S. S. Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways. Journal of Photochemistry and Photobiology B: Biology. Vol. 186. 2018. p. 69-80. DOI: 10.1016/j.jphotobiol.2018.07.003.
-Farias, T. S. M.; e colaboradores. Melatonin Supplementation Decreases Hypertrophic Obesity and Inflammation Induced by High-Fat Diet in Mice. Frontiers in Endocrinology. Vol. 10. 2019. p.1-13. DOI: 10.3389/fendo.2019.00750.
-Favero, G.; Franco, C.; Stacchiotti, A.; Rodella, L. F.; Rezzani, R. Sirtuin1 Role in the Melatonin Protective Effects Against Obesity-Related Heart Injury. Frontiers in Physiology. Vol. 11. 2020. p. 1-11. DOI: 10.3389/fphys.2020.00103.
-Garaleut, M.; Qian, J.; Florez, J. C.; Arendt, J.; Saxena, R.; Scheer, F. A. J. L. Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. Trends Endocrinol Metab. Vol. 31. Núm. 3. p. 192-204. 2020. doi: 10.1016/j.tem.2019.11.011.
-Gooley, J. J.; Chamberlain, K.; Smith, K. A.; Khalsa, S. B. S.; Rajaratnam, S. M. W.; Van-Reen, E.; Zeitzer, J. M.; Czeisler, C. A.; Lockley, S. W. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. Journal of Clinical Endocrinology and Metabolism. Vol.96. Núm.3. 2011. p.463-472. DOI: 10.1210/jc.2010-2098.
-Halpern, B.; e colaboradores. Melatonin increases brown adipose tissue volume and activity in patients with melatonin deficiency: A proof-of-concept study. Diabetes. Vol. 68. Núm. 5. 2019. p. 947-952. DOI: 10.2337/db18-0956.
-Halpern, B.; Mancini, M. C.; Halpern, A. Brown adipose tissue: What have we learned since its recent identification in human adults. Arquivos Brasileiros de Endocrinologia e Metabologia. Vol. 58. Núm. 9. 2014. p. 889-899. DOI: 10.1590/0004-2730000003492.
-Hardeland, R. Melatonin and inflammation-Story of a double-edged blade. Journal of Pineal Research. Vol. 65. Núm. 4. 2018. p.1-23. DOI: 10.1111/jpi.12525.
-Karamitri, A.; Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol. Vol. 15. Núm. 2. p.105-125. 2019. doi: 10.1038/s41574-018-0130-1.
-Kawai, T.; Autieri, M. V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. Vol. 320. Núm. 3. p.C375-C391. 2021. doi: 10.1152/ajpcell.00379.2020.
-Korkmaz, A.; Rosales-Corral, S.; Reiter, R. J. Gene regulation by melatonin linked to epigenetic phenomena. Gene. Vol. 503. Núm. 1. 2012. p.1-11. DOI: 10.1016/j.gene.2012.04.040.
-Liu, Z.; Gan, L, Xu, Y.; Luo, D.; Ren, Q.; Wu, S.; Sun, C. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res. Vol. 63. Núm. 1. 2017. doi: 10.1111/jpi.12414.
-Lumeng, C. N.; Alan, R. S. “Inflammatory links between obesity and metabolic disease.” The Journal of clinical investigation. Vol. 121. Núm. 6. 2011. 2111-7. doi:10.1172/JCI57132
-Manna, P.; Jain, S. K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic Syndrome and Related Disorders. Vol. 13. Núm. 10. 2015. p. 423-444. DOI: 10.1089/met.2015.0095.
-Mesri-Alamdari, N.; Mahdavi, R.; Roshanravan, N.; Lotfi-Yaghin, N.; Ostadrahimi, A. R.; Faramarzi, E. A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women. Horm Metab Res. Vol. 47. Núm. 7. p.504-8. 2015. doi: 10.1055/s-0034-1384587.
-Negi, G.; Kumar, A.; Sharma, S. S. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: Effects on NF-κB and Nrf2 cascades. Journal of Pineal Research. Vol. 50. Núm. 2. 2011. p. 124-131. DOI: 10.1111/j.1600-079X.2010.00821.x.
-Nicoletti, C. F.; Delfino, H. B. P.; Ferreira, F. C.; Pinhel, M. A. S.; Nonino, C. B. Role of eating disorders-related polymorphisms in obesity pathophysiology. Rev Endocr Metab Disord. Vol. 20. Núm. 1. p.115-125. 2019. doi: 10.1007/s11154-019-09489-w.
-Nilson, E. A. F.; Santin-Andrade, R. C.; Brito, D. A.; Oliveira; M. L. Costs attributable to obesity, hypertension, and diabetes in the Unified Health System, Brazil, 2018. Revista Panamericana de Salud Publica. Vol. 44. 2020. p. 1-7. DOI: 10.26633/RPSP.2020.32.
-Nonino, C. B.; Barato, M.; Ferreira, F. C.; Delfino, H. B. P.; Noronha, N. Y.; Nicoletti, C. F.; Junior, W. S.; Welendorf, C. R.; Souza, D. R. S.; Ferreira-Julio, M. A.; Watanabe, L. M.; Pinhel M. A. S. DRD2 and BDNF polymorphisms are associated with binge eating disorder in patients with weight regain after bariatric surgery. Eat Weight Disord. Sep 3. 2021. doi: 10.1007/s40519-021-01290-6.
-Papagiannidou, E.; Skene, D. J.; Ioannides, C. Potential drug interactions with melatonin. Physiology and Behavior. Vol. 131. 2014. p. 17-24. DOI: 10.1016/j.physbeh.2014.04.016.
-Quarta, C.; Sánchez-Garrido, M. A.; Tschöp, M. H.; Clemmensen, C. Renaissance of leptin for obesity therapy. Diabetologia. Vol. 59. Núm. 5. p.920-7. 2016. doi: 10.1007/s00125-016-3906-7.
-Reiter, R. J.; Tan, D. X.; Kim, S. J.; Cruz, M. H. C. Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Structure and Function. Vol. 219. Núm. 6. 2014. p.1873-1887. DOI: 10.1007/s00429-014-0719-7.
-Roopin, M.; Levy, O. Temporal and histological evaluation of melatonin patterns in a “basal” metazoan. Journal of Pineal Research. Vol. 53. Núm. 3. 2012. p.259-269. DOI: 10.1111/j.1600-079X.2012.00994.x.
-Scholtens, R. M.; Van-Munster, B. C.; Van-Kempen, M. F.; De-Rooij, S. E. J. A. Physiological melatonin levels in healthy older people: A systematic review. Journal of Psychosomatic Research. Vol. 86. 2016. p. 20-27. DOI: 10.1016/j.jpsychores.2016.05.005.
-Stolarczyk, E. Adipose tissue inflammation in obesity: a metabolic or immune response? Current Opinion in Pharmacology. Vol. 37. 2017. p. 35-40. DOI: 10.1016/j.coph.2017.08.006.
-Szewczyk-Golec, K.; Rajewski, P.; Gackowski, M.; Mila-Kierzenkowska, C.; Wesolowski, R.; Sutkowy, P.; Pawlowska, M.; Wozniak, A. Melatonin Supplementation Lowers Oxidative Stress and Regulates Adipokines in Obese Patients on a Calorie-Restricted Diet. Oxidative Medicine and Cellular Longevity. Vol. 2017. 2017. DOI: 10.1155/2017/8494107.
-Tan, D. X.; Manchester, L. C.; Qin, L.; Reiter, R. J. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. International Journal of Molecular Sciences. Vol. 17. Núm. 12. 2016. DOI: 10.3390/ijms17122124.
-Vigitel. Brasil. Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico. Estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2019. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise em Saúde e Vigilância de Doenças não transmissíveis. 2019.
-Ying, W.; Fu, W.; Lee, Y. S.; Olefsky, J. M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol. Vol. 16. Núm. 2. p.81-90. 2020. doi: 10.1038/s41574-019-0286-3.
Derechos de autor 2022 Caroline Prochnow, Liane Gonçalves Borges, Vivian Marques Miguel Suen, Heitor Bernardes Pereira Delfino

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
Los autores conservan los derechos de autor y otorgan a la revista el derecho de primera publicación, con el trabajo licenciado simultáneamente bajo una licencia de atribución Creative Commons BY-NC que permite compartir el trabajo con reconocimiento de la autoría del trabajo y publicación inicial en esta revista.
Los autores están autorizados a asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicado en esta revista (por ejemplo, para publicar en un repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista. .
Se permite y anima a los autores a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) en cualquier momento antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la citación de lo publicado. trabajo (ver El efecto del acceso abierto).