Metabolic pathways during the adoption of low carb diets: weight loss vs adverse effects
Abstract
In the past decades the use of low carb diets for weight loss and for the prevention and treatment of obesity has become popular. The Krebs cycle is the main metabolic pathway for oxidation processes involving macronutrients in animal tissue. The Krebs cycle depends on the Acetyl-CoA molecule to be initiated, a molecule generated, at first, in the processes of glycogenolysis and glycolysis. When carbohydrate deprivation occurs because of these types of diets, the activity of these two processes decreases and the body is forced to adopt two other metabolic processes for the generation of Acetyl-CoA, gluconeogenesis and ketogenesis. The present literature review aimed to describe these processes, as well as the effects of increasing their activity and their relationship with Krebs cycle activity. Materials and Methods: A search was performed in the PubMed database for scientific articles published from 2000 to 2022 using terms related to the theme. Conclusion: Low carb diets have adverse effects that require caution, in addition to contradicting the dietary recommendations proposed by health agencies.
References
-Akram, M. Citric Acid Cycle and Role of its Intermediates in Metabolism. Cell Biochemistry and Biophysics. Vol. 68. Num. 3. 2014. p. 475-478.
-Arsyad, A.; Idris, I.; Rasyid, A. A.; Usman, R. A. Faradillah, K. R.; Latif, W. O. U.; Lubis, Z. I.; Aminuddin, A.; Yustisia, I.; Djabir, Y. Y. Long-Term Ketogenic Diet Induces Metabolic Acidosis, Anemia, and Oxidative Stress in Healthy Wistar Rats. Journal of Nutrition and Metabolism. Vol. 2020. 2020. p. 1-7.
-Barber, T. M.; Hanson, P.; Kabisch, S.; Pfeiffer, A. F. H.; Weickert, M. O. The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients. Vol. 13. Num. 4. 2021. p. 1187.
-Bashir, B.; Fahmy, A. A.; Raza, F.; Banerjee, M. Non-diabetic ketoacidosis: a case series and literature review. Postgrad Med J. Vol. 97. Num. 1152. 2021. p. 667-671.
-Bolla, A. M.; Caretto, A.; Laurenzi, A.; Scavini, M.; Piemonti, L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients. Vol. 11. Num. 5. 2019. p. 962.
-Brouns, F. Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable? European Journal of Nutrition. Vol. 57. Num. 4. 2018. p. 1301-1312.
-Caballero, B. The Global Epidemic of Obesity: An Overview. Epidemiologic Reviews. Vol. 29. Num. 1. 2007. p. 1-5.
-Dabek, A.; Wojtala, M.; Pirola, L.; Balcerczyk, A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients. Vol. 12. Num. 3. 2020. p. 788.
-Dansinger, M. L.; Gleason, J. A.; Griffith, J. L.; Selker, H. P.; Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Risk Reduction. JAMA. Vol. 293. Num. 1. 2005. p. 43.
-Dhatariya, K. K.; Glaser, N. S.; Codner, E.; Umpierrez, G. E. Diabetic ketoacidosis. Nature Reviews Disease Primers. Vol. 6. Num. 1. 2020. p. 40.
-Dashty, M. A quick look at biochemistry: Carbohydrate metabolism. Clinical Biochemistry. Vol. 46. Num. 15. 2013. p. 1339–1352.
-Fedorovich, S.; Voronina, P.; Waseem, T. Ketogenic diet versus ketoacidosis: what determines the influence of ketone bodies on neurons? Neural Regeneration Research. Vol. 13. Num. 12. 2018. p. 2060.
-Feinman, R. D. The biochemistry of low-carbohydrate and ketogenic diets. Current Opinion in Endocrinology, Diabetes & Obesity. Vol. 27. Num. 5. 2020. p. 261-268.
-Frigolet, M. E.; Barragán, V. E. R.; González, M. T. Low-Carbohydrate Diets: A Matter of Love or Hate. Annals of Nutrition and Metabolism. Vol. 5. Num. 4. 2011. p. 320-334.
-GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine. Vol. 377. Num. 1. 2017. p. 13-27.
-Gershuni, V. M.; Yan, S. L.; Medici, V. Nutritional ketosis for weight management and reversal of metabolic syndrome. Current nutrition reports. Vol. 7. Num. 3. 2018. p. 97-106.
-Goldenberg, J. Z.; Day, A.; Brinkworth, G. D.; Sato, J.; Yamada, S.; Jonsson, T.; Beardsley, J.; Johnson, J. A.; Thabane, L.; Johnston, B. C. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. Vol. 372. 2021. p. m4743.
-Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARα. International Journal of Molecular Sciences. Vol. 17. Num. 12. 2016. p. 2093.
-Hashimoto, Y.; Fukuda, T.; Oyabu, C.; Tanaka, M.; Asano, M.; Yamazaki, M.; Fukui, M. Impact of low-carbohydrate diet on body composition: Meta-analysis of randomized controlled studies. Obesity Reviews. Vol. 17. Num. 6. 2016. p. 499-509.
-Hinney, A.; Korner, A.; Fischer-Posovszky, P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nature Reviews Endocrinology. Vol. 18. Num. 10. 2022. p. 623-637.
-Imanaka, M.; Ando, M.; Kitamura, T.; Kawamura, T. Impact of registered dietitian expertise in health guidance for weight loss. PLoS ONE. Vol. 11. Num. 3. 2016. p. 1-8.
-Judge, A.; Dodd, M. S. Metabolism. Essays in Biochemistry. Vol. 64. Num. 4. 2020. p. 607-647.
-Longo, R.; Peri, C.; Cricrì, D.; Caruso, D.; Mitro, N.; Fabiani, E.; Crestani, M. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients. Vol. 11. Num. 10. 2019. p. 2497.
-Kanikarla-Marie, P.; Jain, S. K. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radical Biology and Medicine. Vol. 95. 2016. p. 268-277.
-Ma, Y.; Temkin, S. M.; Hawkridge, A. M.; Guo, C.; Wang, W.; Wang, X. Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Letters. Vol. 435. 2018. p. 92-100.
-Mansoor, N.; Vinknes, K. J.; Veierod, M. B.; Retterstol, K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors a meta-analysis of randomised controlled trials. British Journal of Nutrition. Vol. 115. Num. 3. 2016. p. 466-479.
-McPherson, P. A. C.; McEneny, J. The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. Journal of Physiology and Biochemistry. Vol. 68. Num. 1. 2012. p. 141-151.
-Merlotti, C.; Ceriani, V.; Morabito, A.; Pontiroli, A. E. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis. International Journal of Obesity. Vol. 41. Num. 5. 2017. p. 672-682.
-Monnier, L.; Schlienger, J. L.; Colette, C.; Bonnet, F. The obesity treatment dilemma: Why dieting is both the answer and the problem? A mechanistic overview. Diabetes & Metabolism. Vol. 47. Num. 3. 2021. p. 101192.
-Mooradian, A. D. The Merits and the Pitfalls of Low Carbohydrate Diet: A Concise Review. The journal of nutrition, health & aging. Vol. 24. Num. 7. 2020. p. 805-808.
-Newman, J. C.; Verdin, E. β-hydroxybutyrate: Much more than a metabolite. Diabetes Research and Clinical Practice. Vol. 106. Num. 2. 2014. p. 173-181.
-Puchalska, P.; Crawford, P. A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metabolism. Vol. 25. Num. 2. 2017. p. 262–284.
-Rogers, G. W.; Nadanaciva, S.; Swiss, R.; Divakaruni, A. S.; Will, Y. Assessment of Fatty Acid Beta Oxidation in Cells and Isolated Mitochondria. Current Protocols in Toxicology. Vol. 60. Num. 1. 2014. p. 25.3.1-25.3.19.
-Ruan, H. B.; Crawford, P. A. Ketone bodies as epigenetic modifiers. Current Opinion in Clinical Nutrition & Metabolic Care. Vol. 21. Num. 4. 2018. p. 260-266.
-Rui, L. Energy Metabolism in the Liver. In: Comprehensive Physiology. Vol. 176. Num. 10. 2014. p. 177-197.
-Ryan, D. G.; Murphy, M. P.; Frezza, C.; Prag, H. A.; Chouchani, E. T.; O’Neil, L. A.; Mills, E. L.Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nature Metabolism. Vol. 1. Num. 1. 2019. p. 16-33.
-Schugar, R. C.; Crawford, P. A. Low-carbohydrate ketogenic diets, glucose homeostasis, and nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care. Vol. 15. Num. 4. 2012. p. 374-380.
-Shi, L.; Tu, B. P. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Current Opinion in Cell Biology. Vol. 33. 2015. p. 125-131.
-Steinhauser, M. L.; Olenchock, B. A.; O’Keefe, J.; Luan, M.; Pierce, K. A.; Lee, H.; Pantano, L.; Klibanski, A.; Shulman, G. I.; Clish, C. B.; Fazeli, O. K. The circulating metabolome of human starvation. JCI Insight. Vol. 3. Num. 16. 2018. p. 1-16.
-Wang, S. P.; Yang, H.; Wu, J. W.; Gauthier, N.; Fukao, T.; Mitchell, G. A. Metabolism as a tool for understanding human brain evolution: Lipid energy metabolism as an example. Journal of Human Evolution. Vol. 77. 2014. p. 41-49.
-Wang, Z.; Dong, C. Gluconeogenesis in Cancer: Function and Regulation of PEPCK, FBPase, and G6Pase. Trends in Cancer. Vol. 5. Num. 1. 2019. p. 30-45.
-Wang, L.; Chen, P.; Xiao, W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients. Vol. 13. Num. 10. 2021. p. 3420.
-Wasserman, D. H. Four grams of glucose. American Journal of Physiology-Endocrinology and Metabolism. Vol. 296. Num. 1. 2009. p. E11-E21.
-Westerterp-Plantenga, M. S.; Lemmens, S. G.; Westerterp, K. R. Dietary protein - its role in satiety, energetics, weight loss and health. British Journal of Nutrition. Vol. 108. Num. S2. 2012. p. S105-S112.
-Winwood-Smith, H. S.; Franklin, C. E.; White, C. R. Low-carbohydrate diet induces metabolic depression: a possible mechanism to conserve glycogen. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. Vol. 313. Num. 4. 2017. p. R347-R356.
-WHO. World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. Vol. 894. 2000. p. 1-253.
-WHO. World Health Organization. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. WHO Technical Report Series. Vol. 916. 2003.
-Zangari, J.; Petrelli, F.; Maillot, B.; Martinou, J. C. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules. Vol. 10. Num. 7. 2020. p. 1068.
Copyright (c) 2023 Rafael Henrique de Oliveira Nascimento, André Vessoni Alexandrino
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with work simultaneously licensed under the Creative Commons Attribution License BY-NC which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
- Authors are authorized to enter into additional contracts separately for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to post and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can bring about productive change as well as increase impact and impact. citation of published work (See The Effect of Free Access).