Association of the tumor necrosis factor alpha (TNF-α) with the obesity

  • Jane Gehrke Programa de pós-graduação Lato Sensu da Universidade Gama Filho - UGF. Curso de Obesidade e Emagrecimento
  • Ricardo Zanuto Pereira Programa de pós-graduação Lato Sensu da Universidade Gama Filho - UGF. Curso de Obesidade e Emagrecimento. Programa de Pós Graduação Strito Sensu em Fisiologia e Biofí­sica do Instituto de Ciências Biomédicas da Universidade de São Paulo
Keywords: Obesity, Adipocyte, Cytokine, TNF-alpha, Slimming

Abstract

This study had as objective to evaluate the association between the Tumor Necrosis Factor Alpha (TNF-α) and the obesity, allowding to define more clearly the role of the adipocytes in health and obesity, and how the TNF-α acts signaling the molecules on this process, through a bibliographical review. The data were collected on internet sites and scientific magazines papers, approaching articles released since 1995. Several studies suggest that obesity is characterized by the increase of adipose tissue, now considered an active endocrine organ, that secretes a variety of substances metabolical like hormones, clotting proteins and many proinflammatory factors, including the TNF-α. This study intends to show the importance of the TNF-αas a multifunctional cytokine with central role of defense, on which exercises several biological activities, as well as on the development and phenotypical expression of obesity, because it acts straight on the adipocytes, regulating the fat accumulation and interfering directly in the metabolism of the lipids, inhibiting the lipogenesis and increasing the lipolysis on the adipocytes.

References

- Ahima, RS. e Flier, JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab, n. 11, p. 327-332, 2000.

- Bach, D.; e colaboradores. A. Effects of Type 2 Diabetes, Obesity, Weight Loss, and the Regulatory Role of Tumor Necrosis Factor and Interleukin-6. Diabetes, n. 54, p. 2685–2693, 2005.

- Boucher, J.; e colaboradores. Adipokine expression profile in adipocytes of different mouse models of obesity. Horm. Metab. Res, n. 37, v. 12, p. 761-767, 2005.

- Bouloumie, A.; e colaboradores. Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care, n. 8, p. 347-354, 2005.

- Bruun, J.M.; e colaboradores. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am. J. Physiol Endocrinol Metab., n. 285, p. E527-E533, 2003.

- Cancello, R.; e colaboradores. Reduction of macrophage infiltration and chemoattractant geneexpression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes, n. 54, p. 2277–2286, 2005.

- Candolfi, M.; e colaboradores. TNF-α_ Induces Apoptosis of Lactotropes from Female Rats. Endocrinology, n. 143, p. 3611–3617, 2002.

- Charriere, G.; e colaboradores. Preadipocyte conversion to macrophage. Evidence of plasticity. J. Biol. Chem, n. 278, p. 9850–9855, 2003.

- Citi e colaboradores. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res, n. 46, p. 2347–2355, 2005.

- Cousin, B.; e colaboradores. Altered macrophage-like functions of preadipocytes in inflammation and genetic obesity. J. Cell. Physiol, n. 186, p. 380–386, 2001.

- De Pergola, G.; e Pannacciulli, N. Coagulation and fibrinolysis abnormalities in obesity. J. Endocrinol. Invest, n. 25, p. 899–904, 2002.

- Degawa-Yamauchi, M.; e colaboradores. Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes. Res, v 13, n 4, p 662-669, 2005.

- Duffield, J. The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci, n. 104, p. 27–28, 2003.

- Dzienis-Straczkowska, S.; e colaboradores. Soluble Tumor Necrosis Factor-alfa Receptors in Young Obese Subjects With Normal and Impaired Glucose Tolerance. Diabetes Care, n. 26, p. 875–880, 2003.

- Engelman, J.A.; e colaboradores. Tumor necrosis factor-α -mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol, n. 14, p. 1557–1569, 2000.

- Benigni, F.; e colaboradores. The proinflammatory mediator macrophage migration inhibitory factor induces glucose catabolism in muscle. The J. Clin. Investig, v. 106, n. 10, p. 1291-1300, 2000.

- Fain, JN.; Cheema, PS.; Bahouth, SW.; Lloyd-Hiler, M. Resistin release by human adipose tissue explants in primary culture. Biochem. Biophys. Res, n. 300, p. 674–678, 2003.

- Fernández-Real, JM.; e colaboradores. Polymorphism of the Tumor Factor-a Receptor 2 Gene With Obesity, Leptin Levels, Resistance in Young Subjects Diet-Treated Type 2 Diabetic. Diabetes Care, v. 23, n. 6, p. 831-837, 2000.

- Fonseca-Alaniz, M.H.; e colaboradores. O Tecido Adiposo Como Centro Regulador do Metabolismo. Arq. Brás. Endocrinol. Metab, v. 50, n. 2, p. 216-229, 2006.

- Fruebis J.; e colaboradores. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc.Natl. Acad. Sci, n. 98, p. 2005–2010, 2001.

- Winkler, G.; e colaboradores. Expression of tumor necrosis factor (TNF)-a protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-a, soluble serum TNF-receptor-2 concentrations and C-peptide level. Eur. J. Endocrinol, n. 149, p. 129–135, 2003.

- Good, M.; e colaboradores. TNF-α and TNF-α receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue influence of BMI and adipose distribution. Diab. Vasc. Dis. Res, v. 3, n. 1, p. 26-33, 2006.

- Greenberg, A.; e colaboradores. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal related kinase pathway. J. Biol. Chem, n. 276, p. 454456–445461, 2001.

- Greenberg, S.A e Obin, M. Obesity and the role of adipose tissue in inflammation and metabolism . Am. J. Clin. Nutr, n. 83, p. 461S–465S, 2006.

- Gregorio, G.B.D.I.; e colaboradores. Expression of CD68 and Macrophage Chemoattractant Protein-1 Genes in Human Adipose and Muscle Tissues Association With Cytokine Expression, Insulin Resistance, and Reduction by Pioglitazone. Diabetes, n. 54, p. 2305-2313, 2005.

- Gwozdziewiczová, S. e colaboradores. TNF-α in the development of insulin resistance and other disorders. Biomed. Pap. Med, v. 149, n.1, p. 109-117, 2005.

- Hamminga, E.A.; e colaboradores. Chronic inflammation in psoriasis and obesity: Implications for therapy. Med. Hypotheses, v. 67, n. 4; p. 768-773 , 2006.

- Hara, K.; Boutin, P.; Mori, Y. e colaboradores. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes, n. 51, p. 536–540, 2002.

- Hauner, H. Secretory factors from human adipose tissue and their funcionale role. Proc. Nutrition Sociaty, v. 64, n. 2, p. 163-169, 2005.

- Hotta, K.; Funahashi, T.; Arita, Y. e colaboradores. Plasma concentrations of a novel, IN Metabolic Syndrome, 2005.

- James, M.J.; Gibson, R.A; Cleland, L.G. Supplements Dietary polyunsaturated fatty acids and inflammatory mediator production1,2 . Am. J. Clin. Nut, v. 71, n. 1, p. 343-348, 2000.

- Kelley, D.E. e Mandarino, L.J: Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes, n. 49, p. 677–683, 2000.

- Kern, P.A.; e colaboradores. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab, n. 280, p. E745–E751, 2001.

- Kim, E.Y.; e colaboradores. TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J. Immunol, v. 15, n. 176, p. 1026-35, 2006.

- Kissebah, A.H.; e colaboradores. Quantitative trait locion chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc. Natl. Acad. Sci, n. 97, p. 14478–1483, 2000.

- Kougias, P. e colaboradores. Effects of adipocyte-derived cytokines on endothelial functions: implication of vascular disease. J. Surg. Res, v 126, n 1, p 121-129, 2005.

- Kreier, F.; e colaboradores. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat – functional implications. J. Clin. Invest, n. 110, p. 1243-1250, 2002.

- Kullo, I.J.; Hensrud, D.D.; Allison, T.G. Comparison of numbers of circulating blood monocytes in men grouped by body mass index (<25, 25 to <30, > or = 30). Am. J. Cardiol, n. 89, p. 1441–1443, 2002.

- Lin, Y.; e colaboradores. The Lipopolysaccharide-activated Toll-like Receptor (TLR)-4 Induces Synthesis of the Closely Related Receptor TLR-2 in Adipocytes. J. Biol. Chem, n. 275, p. 24255-24263, 2000.

- Loskutoff, D.J.; e colaboradores. The fat mouse: A powerful genetic model to study alterations in hemostatic gene expression in obesity. I. N. Front. Vasc. Biol. Thromb. Hem, p. 151-160, 2000.

- Lyon, C.J.; Law, R.E., Hsueh, W.A. Minireview: Adiposity, Inflammation, and Atherogenesis. Endocrinol, v. 6, n. 144, p. 2195–2200, 2003.

- Matsuda, M, e colaboradores. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J. Biol. Chem, n. 277, p. 37487-37491, 2002.

- Old, L. Tumoral Necrosis Factor (TNF). Science, n. 230, p. 630-633, 1985.

- Ouchi, N.; Kihara, S.; Arita, Y. e colaboradores. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation, n. 103, p. 1057–1063, 2001.

- Pandey, M.; Loskutoff, D.J.; Samad, F. Molecular mechanisms of tumor necrosis factor-α-mediated plasminogen activator inhibitor-1 expression in adipocytes. FASEB J., article 10.1096/fj.04-3459fje, 2005.

- Pausova, Z.; Deslauriers,B.; Gaudet, D. Tremblay, J.; Kotchen, T.A.; Larochelle, P.; Cowley, A.W.; Hamet, P. Role of Tumor Necrosis Factor-a Gene Locus in Obesity and Obesity-Associated Hypertension in French Canadians. Hypertension, n. 36, p. 14-19, 2000.

- Pénicaud, L. e colaboradores. The autonomic nervous system, adipose tissue plasticity, and energy balance. Nutrition, n. 16, p. 903-908, 2000.

- Pietiläinen, K.H.; e colaboradores. Acquired obesity increases cd68 and TNF-α and decreases adiponectin gene expression in adipose tissue. A study in monozygotic twins. J. Clin. Endocrin. Metab, n. 10, p. 01-22, 2006.

- Pinheiro, A.R.O.; Freitas, S.F.T. de; Corso, A.C.T. Uma abordagem epidemiológica da obesidade. Rev. Nutr. Campinas, v. 17, n. 4, p. 523-533, 2004.

- Qi, C. e Pekala, P. Minerevies: Tumoral Necrose Factor-α Induced Insulin Resistenc Adipocytes. SEBM, n. 223, p. 128-135, 2000.

- Rajala, M.W. e Scherer, P.E. Minireview: The Adipocyte at the Crossroads of Energy Homeostasis, Inflammation, and Atherosclero-sis. Endocrinol, v. 144, n. 9, p. 3765–3773, 2003.

- Ronti ,T.; Lupattelli, G., Mannarino, E. The endocrine function of adipose tissue: an update. Clin. Endocrinol, v. 64, n. 4, p. 355-365, 2006.

- Ross, S.E.; e colaboradores. Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol. Cell. Biol, n. 22, p. 5989–5999, 2002.

- Shirai, T.; e colaboradores. Cloning and expression in Esccherichia coli of gene for human tumour necrose factor. Nature, n. 313, p803-806, 1985.

- Skurk, T.; e colaboradores. Production and Release of Macrophage Migration Inhibitory Factor from Human Adipocytes. Endocrinol, n. 146, p. 1006–1011, 2005.

- Suganami, T.; Nishida, J.; Ogawa, Y.A. Paracrine Loop Between Adipocytes and Macrophages Aggravates Inflammatory Changes Role of Free Fatty Acids and Tumor Necrosis Factor . Arterioscler. Thromb. Vasc. Biol, n. 25, p. 2062-2068, 2005.

- Takahashi, K.; e colaboradores. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem, n. 278, p. 46654–46660, 2003.

- Takahashi, M.; e colaboradores. Genomic structure and mutations in adipose-specific gene, adiponectina. Int. J. Obes. Relat. Metab. Disord, n. 24, p. 861-868, 2000.

- Tomas, E.; e colaboradores. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci, n. 99, p. 16309–16313, 2002.

- Trujillo, M.E.; e colaboradores. Tumor Necrosis Factor αand Glucocorticoid Synergistically Increase Leptin Production in Human Adipose Tissue – Role for p38 MAPK. J. Clin. Endocrin. Metab, n. 10, p. 1210-1237, 2006.

- Turcotte, L.P.; e colaboradores. Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats. Diabetes, n. 50, p. 1389–1396, 2001.

- Van Dielen, F.M.H.; e colaboradores. Macrophage Inhibitory Factor, Plasminogen Activator Inhibitor-1, Other Acute Phase Proteins, and Inflammatory Mediators Normalize as a Result of Weight Loss in Morbidly Obese Subjects Treated with Gastric Restrictive Surgery. J. Clin. Endocrinol. Metab, v. 89, p. 4062–4068, 2004.

- Warne, J.P. Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J. Endocrinol, n. 177, p. 351-355, 2003.

- Weisberg, S.D.; e colaboradores. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest, n. 112, p. 1796–1808, 2003.

- Weisberg, S.P.; Mccann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest, n. 112, p. 1796–1808, 2003.

- Winkler, G.; e colaboradores. Expression of tumor necrosis factor (TNF)-alpha protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-alpha, soluble serum TNF-receptor-2 concentrations and C-peptide level. Eur. J. Endocrinol, v. 149, n. 2, p. 129-135, 2003.

- World Health Organization (WHO). Fact sheet: obesity and overweight. Internet: http://www.who.int/dietphysicalactivity/publications/facts/obesity/en/ (aceso 18 de março de 2006).

- Wu, X.; e colaboradores. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes, n. 52, p. 1355-1363, 2003.

- Xu, H.; e colaboradores. Exclusive Action of Transmembrane TNF-α in Adipose Tissue Leads to Reduced Adipose Mass and Local But Not Systemic Insulin Resistance. Endocrinol, v. 143, n. 4, p1502–1511, 2002.

- Xu, H.; e colaboradores. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest, n. 112, p. 1821–1830, 2003.

- Xu,; H. e colaboradores. Altered Tumor Necrosis Factor-α_ (TNF-α) Processing in Adipocytes and Increased Expression of Transmembrane TNF-α in Obesity. Diabets, v. 51, p. 1876-1883, 2002.

- Yamauchi, T.; e colaboradores. The fat-derived hormone adiponectin reverses adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol, n. 20, p. 1595–1599, 2000.

- Yang, R.Z.; e colaboradores. Acute-Phase Serum Amyloid A: An Inflammatory Adipokine and Potential Link between Obesity and Its Metabolic Complications. PLos. Med, v. 3, n. 6, p 287-298, 2006.

- Yokota, T.; e colaboradores. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, n 96, p. 1723-1732, 2000.

- Zhang, H.H.; e colaboradores. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes, n. 51, p. 2929–2935, 2002.

Published
2007-02-04
How to Cite
Gehrke, J., & Pereira, R. Z. (2007). Association of the tumor necrosis factor alpha (TNF-α) with the obesity. Brazilian Journal of Obesity, Nutrition and Weight Loss, 1(1). Retrieved from https://www.rbone.com.br/index.php/rbone/article/view/1
Section
Scientific Articles - Original